Среди множества знаний, которые являются признаком грамотности, на первом месте стоит азбука. Следующим, таким же «знаковым» элементом, являются навыки сложения–умножения и, примыкающие к ним, но обратные по смыслу, арифметические операции вычитания–деления. Усвоенные в далеком школьном детстве навыки, служат верой и правдой денно и нощно: ТВ, газета, СМС, счета на оплату. И везде читаем, пишем, считаем, складываем, вычитаем, умножаем. А, скажите, часто ли вам приходилось по жизни, извлекать корни, кроме, как на даче? Например, такая занимательная задачка, типа, корень квадратный из числа 12345… Есть еще порох в пороховницах? Осилим? Да нет ничего проще! Где тут мой калькулятор… А без него, врукопашную, слабо?
Сначала уточним, что же это такое — квадратный корень числа. Вообще говоря, «извлечь корень из числа» означает выполнить арифметическое действие противоположное возведению в степень – вот вам и единство противоположностей в жизненном приложении. Возведение в степень, допустим, квадрат, это умножение числа на самое себя, т.е., как учили в школе, Х * Х = А или в другой записи Х2 = А, а словами — «Х в квадрате равняется А». Тогда обратная задача звучит так: квадратный корень числа А, представляет собой число Х, которое будучи возведено в квадрат равно А.
Извлекаем квадратный корень
Из школьного курса арифметики известны способы вычислений «в столбик», которые помогают выполнить любые подсчеты с применением первых четырех арифметических действий. Увы… Для квадратных, и не только квадратных, корней таких алгоритмов не существует. А в таком случае, как извлечь квадратный корень без калькулятора? Исходя из определения квадратного корня вывод один – необходимо подбирать значение результата последовательным перебором чисел, квадрат которых приближается к значению подкоренного выражения. Только и всего! Не успеет пройти час-другой, как можно посчитать, используя хорошо известный прием умножения в «столбик», любой квадратный корень. При наличии навыков для этого достаточно пары минут. Даже не совсем продвинутый пользователь калькулятора или ПК делает это одним махом – прогресс.
А если серьезно, то вычисление квадратного корня часто выполняют, используя прием «артиллерийской вилки»: сначала берут число, квадрат которого, примерно, соответствует подкоренному выражению. Лучше, если «наш квадрат» чуть меньше этого выражения. Затем корректируют число по собственному умению-разумению, например, умножают на два, и… вновь возводят в квадрат. Если результат больше числа под корнем, последовательно корректируя исходное число, постепенно приближаются к его «коллеге» под корнем. Как видите – никакого калькулятора, только умение считать «в столбик». Конечно же, есть множество научно-аргументированных и оптимизированных алгоритмов вычислений квадратного корня, но для «домашнего применения» указанный выше прием дает 100% уверенность в результате.
Да, чуть не забыл, чтобы подтвердить свою возросшую грамотность, вычислим квадратный корень ранее указанного числа 12345. Делаем пошагово:
1. Возьмем, чисто интуитивно, Х=100. Подсчитаем: Х * Х = 10000. Интуиция на высоте — результат меньше 12345.
2. Попробуем, тоже чисто интуитивно, Х = 120. Тогда: Х * Х = 14400.И опять с интуицией порядок — результат больше 12345.
3. Выше получена «вилка» 100 и 120. Выберем новые числа — 110 и 115. Получаем, соответственно, 12100 и 13225 – вилка сужается.
4. Пробуем на «авось» Х=111. Получаем Х * Х = 12321. Это число уже достаточно близко к 12345. В соответствии с требуемой точностью «подгонку» можно продолжить или остановиться на полученном результате. Вот и все. Как и было обещано – все очень просто и без калькулятора.
Совсем немного истории…
Додумались до использования квадратных корней еще пифагорейцы, ученики школы и последователи Пифагора, за 800 лет до н.э. и тут же, «нарвались» на новые открытия в области чисел. И откуда что взялось?
1. Решение задачи с извлечением корня, дает результат в виде чисел нового класса. Их назвали иррациональными, иначе говоря, «неразумными», т.к. они не записываются законченным числом. Самый классический пример такого рода – квадратный корень из 2. Этот случай соответствует вычислению диагонали квадрата со стороной равной 1 – вот оно, влияние школы Пифагора. Оказалось, что у треугольника с вполне конкретным единичным размером сторон, гипотенуза имеет размер, который выражается числом, у которого «нет конца». Так в математике появились иррациональные числа.
2. Известно, что лиха беда начало. Оказалось, что эта математическая операция содержит еще один подвох – извлекая корень, мы не знаем, квадратом какого числа, положительного или отрицательного, является подкоренное выражение. Эта неопределенность, двойной результат от одной операции, так и записывается.
Изучение связанных с этим явлением проблем стало направлением в математике под названием теория комплексной переменной, имеющим большое практическое значение в математической физике.
Любопытно, что обозначение корня – радикал – применил в своей «Универсальной арифметике» все тот же вездесущий И. Ньютон, а в точности современный вид записи корня известен с 1690 года из книги француза Ролля «Руководство алгебры».